Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Cogn Neurodyn ; : 1-14, 2021 Sep 10.
Article in English | MEDLINE | ID: covidwho-20242747

ABSTRACT

COVID-19 was first identified in December 2019 at Wuhan, China. At present, the outbreak of COVID-19 pandemic has resulted in severe consequences on both economic and social infrastructures of the developed and developing countries. Several studies have been conducted and ongoing still to design efficient models for diagnosis and treatment of COVID-19 patients. The traditional diagnostic models that use reverse transcription-polymerase chain reaction (rt-qPCR) is a costly and time-consuming process. So, automated COVID-19 diagnosis using Deep Learning (DL) models becomes essential. The primary intention of this study is to design an effective model for diagnosis and classification of COVID-19. This research work introduces an automated COVID-19 diagnosis process using Convolutional Neural Network (CNN) with a fusion-based feature extraction model, called FM-CNN. FM-CNN model has three major phases namely, pre-processing, feature extraction, and classification. Initially, Wiener Filtering (WF)-based preprocessing is employed to discard the noise that exists in input chest X-Ray (CXR) images. Then, the pre-processed images undergo fusion-based feature extraction model which is a combination of Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRM), and Local Binary Patterns (LBP). In order to determine the optimal subset of features, Particle Swarm Optimization (PSO) algorithm is employed. At last, CNN is deployed as a classifier to identify the existence of binary and multiple classes of CXR images. In order to validate the proficiency of the proposed FM-CNN model in terms of its diagnostic performance, extension experimentation was carried out upon CXR dataset. As per the results attained from simulation, FM-CNN model classified multiple classes with the maximum sensitivity of 97.22%, specificity of 98.29%, accuracy of 98.06%, and F-measure of 97.93%.

2.
Computers, Materials and Continua ; 74(3):6195-6212, 2023.
Article in English | Scopus | ID: covidwho-2205945

ABSTRACT

The Coronavirus Disease (COVID-19) pandemic has exposed the vulnerabilities of medical services across the globe, especially in underdeveloped nations. In the aftermath of the COVID-19 outbreak, a strong demand exists for developing novel computer-assisted diagnostic tools to execute rapid and cost-effective screenings in locations where many screenings cannot be executed using conventional methods. Medical imaging has become a crucial component in the disease diagnosis process, whereas X-rays and Computed Tomography (CT) scan imaging are employed in a deep network to diagnose the diseases. In general, four steps are followed in image-based diagnostics and disease classification processes by making use of the neural networks, such as network training, feature extraction, model performance testing and optimal feature selection. The current research article devises a Chaotic Flower Pollination Algorithm with a Deep Learning-Driven Fusion (CFPADLDF) approach for detecting and classifying COVID-19. The presented CFPA-DLDF model is developed by integrating two DL models to recognize COVID-19 in medical images. Initially, the proposed CFPA-DLDF technique employs the Gabor Filtering (GF) approach to pre-process the input images. In addition, a weighted voting-based ensemble model is employed for feature extraction, in which both VGG-19 and the MixNet models are included. Finally, the CFPA with Recurrent Neural Network (RNN) model is utilized for classification, showing the work's novelty. A comparative analysis was conducted to demonstrate the enhanced performance of the proposed CFPADLDF model, and the results established the supremacy of the proposed CFPA-DLDF model over recent approaches. © 2023 Tech Science Press. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL